The Importance of In-Vehicle Exposures

Presentation to the Board

December 9, 2004

Dr. Scott Fruin, P.E. Research Division

Outline

- Overview of in-vehicle exposures
- In-vehicle studies conducted in CA
 - In-vehicle diesel PM exposures calculated from black carbon measurements, 1997 chase study¹
 - Ultrafine particle exposures from 2003 measurements on LA freeways²
- Implications of in-vehicle exposures
- Measures of progress

¹Rodes et al., 1998; Fruin et al., 2004 ²Westerdahl et al., 2004

Overview of In-Vehicle Concentrations

- Air exchange rates in vehicles high
- Concentrations:

In-Vehicle = Centerline > Roadside >> Ambient

Examples of in-vehicle-to-ambient concentration ratios:

Benzene: 4 to 8 times higher¹

Diesel PM: 5 to 15 times higher²

1,3-butadiene: 50 to 100 times higher³

¹Rodes et al., 1998 ²Fruin et al., 2004 ³Duffy and Nelson, 1997

Overview of In-Vehicle Exposures

- ~90 minutes per day in vehicles
- Benzene: 15-20% of total exposure (LA)¹
- Diesel PM: 30 55% of total exposure (CA)²
- 1,3-butadiene, ultrafine particles: likely > 50%
- 6% of day driving can give up to half of our exposures

Estimating In-Vehicle Diesel PM Exposures

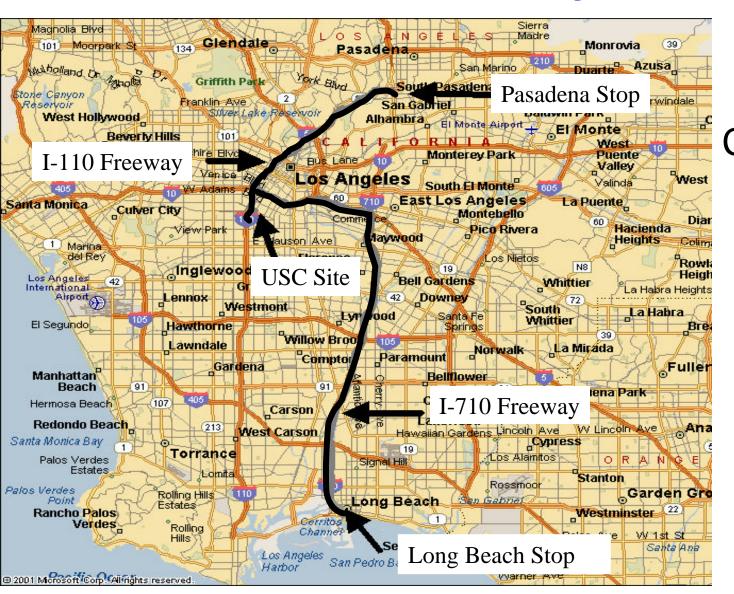
- Sacramento and Los Angeles, 1997
- Real-time measures of fine particle counts and black carbon
- Diesel vehicle chase-study design

Charles Rodes et al., 1998. RTI, Sierra Research, Aerosol Dynamics; SCAQMD co-funding

Average Black Carbon Concentration behind Different Vehicle Types, LA:

	Black carbon	Number of
Vehicle Type Followed	<u>(µg/m³)</u>	<u>vehicles</u>
(Urban background)	~1	
(Roadway background)	4.8	
Diesel tractor trailer	13	47
Diesel transit bus, high exhaust	16	12
Diesel passenger car (PC)	19	8
Gasoline-powered PC, smoky	19	6
Diesel transit bus, low exhaust	95	16
Highest emitter observed	>400	

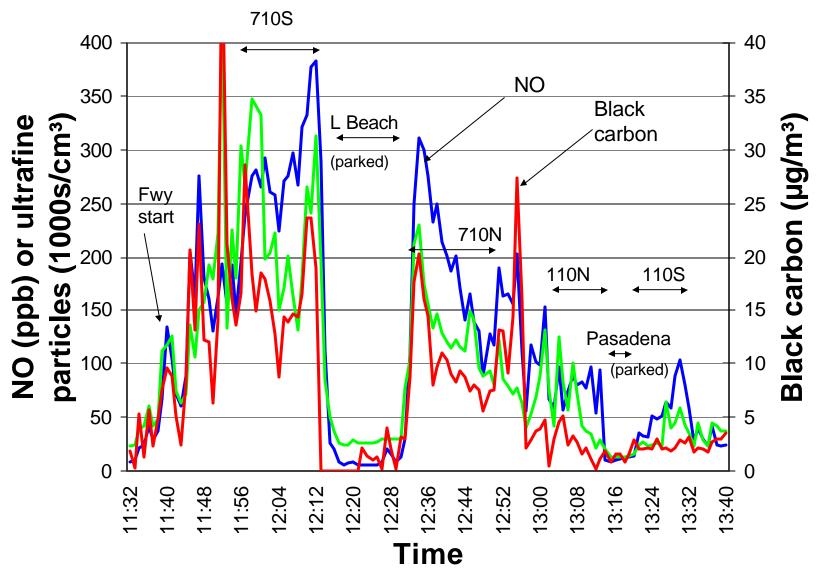
In-Vehicle Diesel PM Concentrations: Realistic-Driving Conditions


- High congestion: 11 to 33 μg/m³ (LA and Bay Area)
- Moderate congestion: 6 to 17 μg/m³
- 5 to 15 times calculated ambient concentrations
- 30 to 55% of total diesel PM exposure
 - In-vehicle time most important route of exposure on a per-time basis

1997 In-Vehicle Exposure Results

 On-road diesel PM emissions very effective at producing exposures

 On-road reductions yield 2 to 5 times more health benefit than equal offroad reduction


2003 Field Study Route

Continuous pollutant measure-ments:

Black carbon, ultrafine particles, NO, NO₂, CO, CO₂, particle-bound PAHs, PM2.5

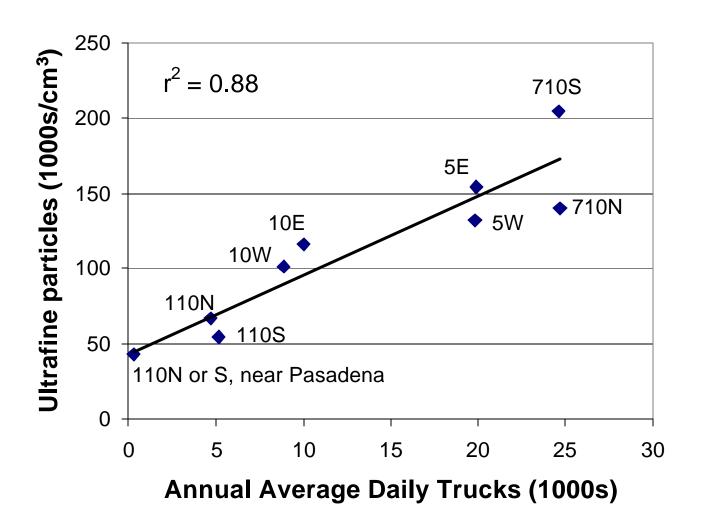
Time Series: NO, Ultrafine Particle Number, and Black Carbon

High Emitter of Black Carbon, PM2.5

High Ultrafine Particle Emitter

Diesel truck, no visible emissions

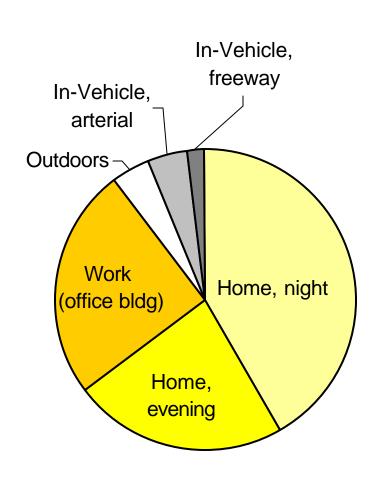
High Ultrafine Particle Emitter

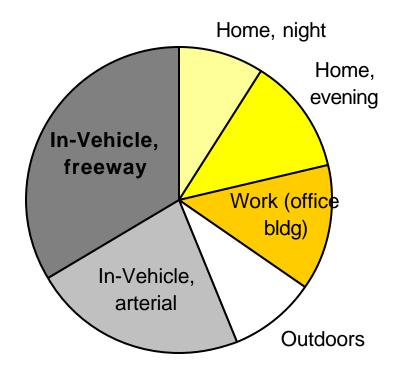

Gasoline-powered van

Average In-Vehicle Concentrations for Four Days

Location or roadway	Ultrafine particle conc.	NO	Black carbon	CO ₂	Avg. min.
Location of roadway					per
	(#/ cm ³)	(ppb)	(µg/m³)	(ppm)	run
Residential Street (Long Beach)	27,000	19	1.4	420	14
110N freeway near Pasadena (~300 trucks/day)	43,000	150	1.6	770	15
110N freeway (~3000 trucks/day)	67,000	230	3.9	850	10
710S freeway (~25,000 trucks/day)	200,000	400	14	850	21

Ultrafine Particle Number by Freeway Segment versus Average Daily Truck Count


In-Vehicle Fraction of Total Ultrafine Particle Exposure


 Average ultrafine particle number and time spent:

	Time	Concentration
Location	<u>(Hrs)</u>	(1000s/cm ³)
Residential	9	2 (night) ¹
Residential	5.5	5 (evening) ¹
Workplace	7	5
Outdoors	1	20
In-vehicle arterial	1	50
In-vehicle freeway	0.5	150

>50% exposure from in-vehicle time

In-Vehicle Fraction of Total Ultrafine Particle Exposure

Average Time Spent

Contribution to Exposure

In-Vehicle Studies as Measure of Progress

- Similar to tunnel studies
- Gasoline-powered vehicle success:

1987 ambient VOC concentrations in LA¹ ~ 1997 in-vehicle concentrations²

Diesel-related:

Results more mixed

¹Shikiya et al., 1989 ²Rodes et al., 1998

Take Home Messages

- In-vehicle exposures important to overall exposures to vehicle-related pollutants
- Ultrafine particle exposure depends on:
 - Length of your commute
 - Diesel truck volumes
 - Types of vehicles followed

Take Home Messages

- Location of emissions matter:
 - On-road emissions produce greater overall exposures than off-road
 - Exhaust at low and rear of vehicle produces greater in-vehicle impacts than exhaust at high and front of vehicle
- Reductions in on-road diesel emissions are critical to reducing invehicle exposures

Do In-Vehicle Particles Play an Important Role in Heart Disease?

- Recent study found association with being in traffic and heart attack in following hour¹
- Study of North Carolina troopers found changes in cardiac rhythm and blood markers of inflammation and coagulation²
- Proposed ARB study of ultrafine particles from freeway driving and cardiovascular and blood marker symptoms